Continuous coexistency preservers on effect algebras
نویسندگان
چکیده
منابع مشابه
Zero Product Preservers of C*-algebras
Let θ : A → B be a zero-product preserving bounded linear map between C*-algebras. Here neither A nor B is necessarily unital. In this note, we investigate when θ gives rise to a Jordan homomorphism. In particular, we show that A and B are isomorphic as Jordan algebras if θ is bijective and sends zero products of self-adjoint elements to zero products. They are isomorphic as C*-algebras if θ is...
متن کاملLinear disjointness preservers of W*-algebras
In this paper, we give a complete description of the structure of zero product and orthogonality preserving linear maps between W*-algebras. In particular, two W*-algebras are *-isomorphic if and only if there is a bijective linear map between them preserving their zero product or orthogonality structure in two directions. It is also the case when they have equivalent linear and left (right) id...
متن کاملLinear Orthogonality Preservers of Standard Operator Algebras
In 2003, Araujo and Jarosz showed that every bijective linear map θ : A → B between unital standard operator algebras preserving zero products in two ways is a scalar multiple of an inner automorphism. Later in 2007, Zhao and Hou showed that similar results hold if both A,B are unital standard algebras on Hilbert spaces and θ preserves range or domain orthogonality. In particular, such maps are...
متن کاملCompletely continuous Banach algebras
For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a sufficient condition for an o...
متن کاملCompletely Continuous Banach Algebras
For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a suffici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2020
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8121/abcb44